Obtaining Subwavelength Optical Spots Using Nanoscale Ridge Apertures

نویسندگان

  • E. X. Jin
  • X. Xu
چکیده

Concentrating light into a nanometer domain is needed for optically based materials processing at the nanoscale. Conventional nanometer-sized apertures suffer from low light transmission, therefore poor near-field radiation. It has been suggested that ridge apertures in various shapes can provide enhanced transmission while maintaining the subwavelength optical resolution. In this work, the near-field radiation from an H-shaped ridge nanoaperture fabricated in an aluminum thin film is experimentally characterized using near-field scanning optical microscopy. With the incident light polarized along the direction across the gap in the H aperture, the H aperture is capable of providing an optical spot of about 106 nm by 80 nm in full-width half-maximum size, which is comparable to its gap size and substantially smaller than those obtained from the square and rectangular apertures of the same opening area. Finite different time domain simulations are used to explain the experimental results. Variations between the spot sizes obtained from a 3 3 array of H apertures are about 4–6%. The consistency and reliability of the near-field radiation from the H apertures show their potential as an efficient near-field light source for materials processing at the nanoscale. DOI: 10.1115/1.2401196

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording.

Near-field transducer based on nanoscale optical antenna has been shown to generate high transmission and strongly localized optical spots well below the diffraction limit. In this paper, nanoscale ridge aperture antenna is considered as near-field transducer for heat-assisted magnetic recording. The spot size and transmission efficiency produced by ridge aperture are numerically studied. We sh...

متن کامل

Concentrating light into nanometer domain using nanoscale ridge apertures and its application in laser-based nanomanufacturing

In this work, we investigate light concentration in nanoscale ridge apertures and its applications in nanomanufacturing. Optical transmission of ridge apertures in a metal film is optimized by numerical design using the finite-difference time-domain (FDTD) method. We show that ridge apertures provide an optical transmission enhancement of several orders of magnitude higher than regularly shaped...

متن کامل

Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture.

Nanoscale ridge aperture antennas have been shown to have high transmission efficiency and confined nanoscale radiation in the near field region compared with regularly-shaped apertures. The radiation enhancement is attributed to the fundamental electric-magnetic field propagating in the TE(10) mode concentrated in the gap between the ridges. This paper reports experimental demonstration of fie...

متن کامل

Contact optical nanolithography using nanoscale C-shaped apertures.

C-shaped ridge apertures are used in contact nanolithography to achieve nanometer scale resolution. Lithography results demonstrated that holes as small as 60 nm can be produced in the photoresist by illuminating the apertures with a 355 nm laser beam. Experiments are also performed using comparable square and rectangular apertures. Results show enhanced transmission and light concentration of ...

متن کامل

Nanolithography using high transmission nanoscale ridge aperture probe

Nanoscale ridge apertures provide a highly confined radiation spot with a high transmission efficiency when used in the near field approach. The radiation confinement and enhancement is due to the electric–magnetic field concentrated in the gap between the ridges. This paper reports the experimental demonstration of radiation enhancement using such antenna apertures and lithography of nanometer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006